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BENCHMARKING-GraphicsWorkstations

Bruce Eric Brown and Robert L. Judd’

The Quail Group, Orem, Utah and University of California, Lawrence
Livermore National Laboratory, Livermore, California

This paper reports on work being performed to
benchmark a new breed of machines, the graphics
workstations for scientific and engineering applications. We
begin with the history of worksiations and how they
developed. Many different forces created the graphics
workstation. Scientific and engineering calculations are
traditionally performed by super computers in a computing
center. The graphic worktation was introduced, and this
technology was added to the computing environment. The
answers we need are...what can the workstations do and when
do we remove the programs or purts of programs from
supercomputers and place them on workstations? Benchmarks
and whas they can and can not measure are discussed in this
light. The particulars abour graphics benchmarks and the
operating system, including windows, are reviewed, then the
benchmarks we are using are described and the results are
presented. Since this work is never finished, future plans are
also discussed. The emphasis of our work is toward
scientific and engineering workstations connected with
existing mainframe compuers.

In the industry today we hear the term JAWS (Just
Another WorkStation) when a new workstation is introduced.
What does the new product do beyond those on the marker?
In this paper we present ways to measure and tell the
differences besween workstations.

1. Introduction

What is a graphics workstation? Is it a PC, a terminal,
a2 mini-computer, or a micro? It is these and more. In the
beginning, in about the mid 1960's, we had the IBM 360 and
the CDC 6600 with operating systems allowing for baich and
timesharing on a large scale. The interactive terminal was
the old Telczype model 33. Graphics systems were available,
but they were large and expensive. By the late 1960's we had
introduced the direct views storage tube (DVST), otherwise
known as the Tektronix. Graphics became available to more
users. The computer networks were developing and
smaller graphics system (calligraphic) were used. Video
images generated on the computer could be shown and
refreshed from disks, and in the operating system world
UNIX began.

* Authors' current addresses: Bruce Eric Brown, The Quail Group, Inc.,
561 East Quail Road, Orem, Utah 84057 (801)225-4342 and Robert L.
Judd, Los Alamos National Laboratory, C-6 Computer Graphics,
MS-B272, P.O. Box 1663, Los Alamos, New Mexico 87545
(505)667-7356.

In the early 1970's Texas Instruments introduced
the Silent 700 terminal and "dumb” video or glass terminals
were used. The mini-computer developed a large following
requiring more terminals and more local capabilities.
Toward the late 1970's the XEROX PARC (Palo Alto
Research Center) used the ALTO computer, windows, and
Ethemnet. This was a move toward graphics workstations. The
late 1970's also brought "smart” terminals, color graphics
(bit-mapped), "home" computers, microprocessors, CP/M, and
add-on graphics processors. Terminals got smarter and
computers went home. In the 1980's, "intelligent" terminals
arrived, along with local area networks, the first graphics
workstations, and the IBM PC with MSDOS. UNIX was also
supported by AT&T.

The result was' that graphics workstations grew out
of terminals, mini-computers, PCs, data communications,
networks, and research and development advances. They are
a combination of many developments and they are still
evolving (see Figure 1). We can not give a definitive definition
of a graphics workstation, but some of its major attributes can
be described. A graphics workstation is micro-computer
based with a disk operating system. It has a graphics display
and a data communication interface. That is the minimum.
More advanced features of graphics workstations include bit
mapped displays, higher resolution (1024+), window
systems with mice, local area networks, and multi-process
and multi-user operating systems. The computing power
also exceeds many of the 1960's mainframes.

Mini-computers
Data Communications &

Networks 1

] R&D advances
Terminals

Figure 1. Influences on Workstations

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract No. W-7405-Eng~48.



2. Bet:\chmarking

- Why Benchmark? The answer is obvious. We need
to compare systems before we purchase them. Who has not
been burmed with "caveat emptor"? Do we believe the
manufacturer's claims or do we do our own testing?
Answers are necded before we buy. Today we need to
know what graphics workstations can do and how we can
distribute our computing needs over them in conjunction
with our existing mainframes. To increase productivity,
some programs should be taken off the mainframe systems
and placed on the workstations-but which ones and when are
the major questions. Benchmarks can help us in our planning,
but what is a benchmark?

, From the dictionary we read that a benchmark is a
marked point of known or assumed elevation. In Byte
magazine (Feb. 1984) Jerry Houston said: "The ideal
benchmark...a carefully planned demonstration in which the
specific application intended for the product is simulated as
closely as possible."(1) Can each potential buyer take the time
to develop benchmarks before each purchase? The answer is
no. We do not have the luxury of time or resources to do
this. Potential purchasers want an EPA highway and city
estimate of the MPG for the systems they are considering.
A benchmark should be a simulation of use. Short of leasing
the equipment for an extended period of time, we can not test
the use before we buy.

For graphics workstations, we are concerned
with: graphics, processing power (both floating point and
integer), and the operating system (disks, networks,
languages and windows). The functionality and performance
need to be measured. The benchmarks do not consider the
ergonomics, heat, noise, power requirements or looks. The
usefulness or useability that are critical to the productivity
of the system are also not considered.

Benchmarks are available and much has been writien
about them (2,3). We have the Whetstones, the tower of
Hanoi, and a set of commercially available benchmarks
for UNIX from AIM technology. For the processing power,
particularly floating point there are several known benchmarks.
The Livermore Fortran Kernels (4) and the Argonne
LINPACK results (5) to name just two. These measure the
speed and report the values in FLOPS (floating point
operations per second). The emphasis of floating point
benchmarks has been to measure the speed. Karpinski (6) has
aiso published an article on the quality or correctness of the
floating point caiculations. Another measure of the speed of
the system are the numbers reported by John Swanson of
SASI for his ANSYS finite element program. This is not a
benchmark, but rather the result of a large number of problems
run on each different machine(7). In the next section we look at
what is needed for a graphics benchmark.

3. Graphics

When we discuss graphics, each application has
different needs. Are the plots two-dimensional or
three-dimensional? Do we need color? How fast do we need
to interact with the images produced? To address these issues
we need to measure several different functions of the
workstation. The first is the raw drawing speed of the system.
When we use calligraphic systems the vector inches per second
are usually readily available and accurate. For raster systems
the vector inches per second are a little harder to obtain and

are not that meaningful. We need to measure the scan
conversion time of the workstations in terms of pixels per
second but this has to be used carefully in our evaluation of
systems, since a vector of the same screen length on a 512 x
512 pixel system has one half as many pixel calculations as on
a 1024 x 1024 system. To realize the same screen display rate,
the 1024 x 1024 system must draw vectors twice as fast as
the 512 x 512 system. )

The second category to be measured is transformation
times, including clipping, rotations (if any), and scaling. The
two-dimensional rotations may or may not be presentin
the system. At this level we also have several packages of
callable routines. The native mode of the hardware usually has
a hook here and then libraries such as GKS and PLOT10 are
also available.

Much of the work of modem scientific and
engineering calculations uses three-dimensional data--hence
the need for three-dimensional displays. This adds to the
amount of processing required to display a picture. The data
can then be rotated, scaled, clipped, and projected onto a
two-dimensional screen before being displayed. Libraries of
routines for these functions such as ACM SIGGRAPH GSPC
Core or ISSCO's DISPPLA are available. Hidden surface
removal or hidden line removal must also be taken care of, but
that is currently outside the scope of this work. The
transformations of three-dimensional data take floating point
processing power. Some workstations have special VLSI
processors for these functions (8), while others use
general-purpose hardware. The benchmarks try to measure
the different modes of plotting.

4. O/S and Windows

When we look at workstations, we have complete
computer systems in their own right. The choices seem to be
two: the first is an open system to which any other
manufacturer of products can run, and the second is a closed
system. A good example of the open system is the SUN
Computer system running UNIX 4.2. Any manufacturer
who uses this operating system can be added to the network.
A good example of the closed system is Apollo.

Windows have become a requirement for some users.
Most serious users have more than one problem or task
running at the same time. They may have a calculation running
while they prepare data for the next run and work on a progress
report due that day. Windows allow the user to do more than
one task or at least monitor more than one task at the same
time. Interaction with the systems is usually done with a
mouse although tablets, joy sticks, and touch systems also
work.

5. The Benchmarks

The benchmarks used for evaluation of graphics
workstations include much of the work of previous
benchmarks. We have started with the Livermore Fortran
Kernels for floating point performance and have added the
graphics benchmarks. The first graphics benchmark atempts
to determine the raw drawing speed of the graphics device.
This is done by sending vectors of known length to the device
at the lowest level to be plotted. To accomplish this we have
had to develop our own library of graphics functions. This
library consists of open, close, erase, line, move, draw, and
timing functions. Appendix A gives a listing of one of these
libraries for the SUN computer. The second benchmark
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uses the Sierpinski “space filling curve algorithm (9) to plot
two-dimensional vectors. The third benchmark we'mpcf w0
determine the tisne that the processor would take to do the
transfoemation ‘requited 10 “plot three-dimensionai: data.
The last benchmark plots a "standard" picture in both two and
three dimensions,

The first graphics benchmark tries to calculate the
speed of the scan ‘conversion for vectors in two dimensions.
Three loops are used. the first draws 1000 (default) long
vectorns. A lon%f(vecmr: is defined to be-the minimum of the
screensize in X and Y. Next it draws the same number of
short vectors. Short here is defined 1o be- 1/20th of a long
vector. The final loop calls'a dummy routine the same
number of times 'so we can subiract the system overhead of
the'funiction ' calls. - The vectors are aiso plotied at various
angles, from 0 to 90 degrees at 5 degree incremenis (see
Figure 2). This is 10 deétermine if 'there are 'any angular
dependencies for the scan conversion algorithm. Looking at the
results presented beloiv we can also see the influence of the
hardware architecture: horizontal vectors can be plotted
faster than non-horizontal vectors.

Figure 2. First Benchmark ourput.

The results of the benchmark are printed out and
shown below. :

Angle Long=1024, Shorte=5l, Dummy VPS L VPS S Pixalis/sec
4] 6.050 $.617 0,050 165.2 178.0 22451384.6
5 6.631 6,050 0.03) 150.7 165.3 1668000.0
10 7.033 6.100 0,033 142,1 183.9 1042500.0
15 7.100 6.083 0,050 140.8 164.3 957049.2
20 _1.100 6€.083 0,033 129.8 164.4 601855.7
25 8.133 6.117 0,050 122.9 163.4 482479.3
30 8.033 6.133 0,033 124.4 1863.0 $12105.2
33 8.833 6.150 0.033 113.2 1e62.6 362608.7
40 8.783 6.167 0.050 113.8 162.1 371847.1
45 8.73) 6,183 0,017 11v.5 161.7 301568.6
$0 8.567 6.167 0.017 116,7 162.1 405416.7
55 8.767 6.150 0,017 114.1 1862.6 371847.1
60 8.700 6.217 0.017 114.9 160.8 j9el2.l
(1] 8.617 6.150 0.033 116.0 162.6 394459.5
70 2.300 6.150 ©.017 120.5 162.6 452538.1
15 8.233 6.150 0.017 121,4 162.6 467040.0C
20 7.950 6.133 0.017 175.8 163.0 535596.3
(1] 7.767 6.167 0.017 . ~.7 1862.1 608125.0
90 7.087 5.700 0.033 1. .% 175.4 711951.2

Average 12 .2 164.3 682326.6

The results above are for the Sun workstation and we
interpret the numbers as the horizontal data goes faster by a
six over the other angles. \‘\)Ifh;nclummc}:ut:
borizontal also go faster because hardware layout
The pi ‘:::dofdl?hudmafmalloflhpqmbeadu,
ch& ’ pixels: per second report;: almost

700,000 pixels per second. The ratio of the short to long
vector plot times is nowhere near the twenty -to-one ratio of
their lengths so the overhead of setup for a vector is significant.

The second benchmark is named Sierpinski. This
program generates 2 _curve from 2 family of space-filling
curves (see Figure 3). The aigorithm taken to its, limaits will fill
a two-dimeasional plane. This benchmark was chosen because
it generates a large number of vectors and they become
progressively shorter. Many engineering and scientific plots as
the complexity increases the vector length becomes shorter so
this is an approximation of these types of plots. The times for
performing these algorithms are also shown in tablé form.

SIERP =~ GRAPHRICS OFF

uraer 1 o-- sec - 0.02 == wec - 16 == vec/sec = 960
grder 2 ~- sec - 0.02 -~ vec = 40 -~ vec/sec = 4800
orger 3 -- sec = (.02 -~ vec » 336 -- vac/sec = 20160
oraer 4 -- sec = 0.08 -~ vec » 1360 -- vec/sec = 16320
oroer 3 == sec - 0,35 -~ vec = 5456 -~ vec/sec + 15588
Jraer. & -- sec - 1,40 =~ vec - 21840 -- vec/sec = 15600
order 7 == s8C <+ 5.6 -~ vec = 87176 -~ vec/sec = 15510
order 8 -- sec - 22.65 -~ vec = 349520 -- vec/sec = 15431

SIERP <-- GRAPHICS ON
-~ g@Cc + 0.12 -~ vec
~= 30C - 0.48 -~ vec

1 16 -- vec/sec = 137
?
order 3 -~ 'sec = 1.97 -~ vec
4
9

80 -- vec/sec = 165
"33 == vec/sec = . 170
1360 <~ Vec/sec = 173
5456 -~ vec/sec = 175

-~ s@C = 7.82 ~~ vec
~~ sec = 31,03 -~ vec

4 s
| ] 'i
s . ¥ ’,{
Y

Figure 3. Sierpinski, order 1, 2, and 3.

The nature of the program is o shut itself off after the

first curve of order n takes more than twenty seconds. The

also draws shorter vectors as the order increases.

numbers generated here in vectors per second average

164, which matches the average for short vectors reported by
our first benchmark.

The third graphics benchmark is related to the
Livermore Forran Kemels. In this we do the calculations

clipping and perspective. To ac ish all this
transformation of rotation about each-axis (X,Y, and
translation }n:X,Y. and Z, scaling ;lﬂfthe data, and
preparation for perspective viewing are performed with a 4x4
matrix muhip‘won (8). The clipping is done with IF tests
and then the per ve XY coordinates are determined with
the division by, the scaled Z coordinate. The algorithm is shown
below written in C:



for{ i=0; i<num_vectors; i++)

/* wansformation, rotate, translate sod scaie */
xﬂmﬁm'n(oﬂol + vecs(ilf1}*m{1][0] + vecs{i}2}*m{2}{0} +ml3l[01.
yovocsfij{Of*m{0}{1] + vecs{il{11*ml1][1] + vecs{ilieI*m2]{1] +m{3){1};

z-nuh]ﬂ)MlZ] + veesfil{1]*m{1){2} + vees{ili2]*m{2 32k
” = vecsii2] & wIBE : w2z s

i* ‘ch' 173 .

(x> w) xaw;
elseif x < -w) x = -w;

(y>w)ysw;
elseif(y<-w)y=-w

Hz2>w)zaw;
elseif(z2<c-w)z=-w;

/* perspective division */

X = N
Yy =y,
}

Results pnmdontandshownbelowfor
theSUNlemmthow:heﬂmnng point processor. The twst
was run ten times to obtain the average.

time = 4,740 210.970 trans. per sec. = 6.962 KFLOPS
time = 4.540 220.264 trans., per sec. = 7.269 KFLOPS
time = 4,600 217.39] trans. per sec. - ', 174 KFLOPS
time = 4.340 230.415 trans. per sec. - /.604 KFLOPS
cime = 4.200 238.095 ctrans. per sec. '.857 KFLOPS
time = 4.380 228.311 trans. per sec. - 7.%34 KFLOPS
time = 4.900 204.082 crans. per sec, = 6.73% KFLOPS
time = 4.420 226.244 trans. per sec, = 7.466 KFLOPS
time = 4.200 238,095 trans. per sec., = 7.857 KFLOPS
time = 4.240 235.849 trans. per sec., = 7.783 KFLOPS

Averages 224 trans. per sec. 7.46 KFLOPS

The space shuttle plot shown in Figure 4 is our
standard three-dimensional plot. We first take the
three-dimensional data and transform it to two
dimensions and it. The two-dimensional display list is
then plotted and yadummyrounne is called to plot the
dm.’l'hescumuaexepawdm form:

1104 vectors having a total length of 38316 (pixeis).
Average wector length = 34, max = 361, min = 1

3D time = 15.050 secs. 73.4 veécs/sec or 2545.3 pu.-u/soc
2D time = 6.300 secs, 175.2 vecs/sec or $081.3 pixels/sec
2Dltime « 0,500 secs, 2208.0 vecs/sec or 54046.0 pixels/sec

Figure 4. Space Shurtle - Standard Picture

To check our data we take the times reported by
our first benchmark fnr&omng’ and the third for i
and we find that the 1104 vectors: would take.
9+ seconds to transform and 5+ seconds to plot. We soe that
the two-dimensional plot time is 6.3 seeonds somm
within a rensonable error range.

The results presented are a function of being ablcto
measure accurately the time it takes to perform each operation.
Most systems -have mng&ncuons available and our
requircments are that the hmarks be run long enough
that the errors in timing -are small. A great statement, but what
does it'mean? We run each benchmark several times and try
to take the best numbers produced. Oun UNIX systems there
are many dacmons running around in the background which
can interfere with our runs if the timing routines do not take
them into account. Below are shown two sets of numbers
generated on the SUN one afier were made

. Atlempts
to delete. every possible conflicting ‘daemon, but yet the.

numbers differ. Fortunately, the averages are pretty good.
The. accume mmng of runs Should be the subject of another
paper.

Loop Numper i ot 2 Number of Vectors = 1000 Length = 1024
Angle Long=1024, Short=51, Dummy VPS L VPS S Pixels/sec

[} 6.717 $.6i7 0.017 148.9 178.0 884545.5
3 6.633 6.033 0.017 150.7 165.7 1621666.7
10 7.05%0 6.13 0.033 141.8 163.0 1061454.5
15 1.067 6.067 0.017 141.5 164.8 973000.0
20 7.683 €.133 0.017 130.1 163.0 627741.9
25 8.133 6.133 0.017 122.9 163.0 486500.0
30 8.117 6.117 0.017 123.2 163.5 486500.0
kH 8.817- 6.167 0.033 113.4 162.1 367169.8
40 8,767 6.167 0.017 114.1 162.1 374230.9
45 8.717 6.150 0.033 114.7 162.6 379090.9
50 8.600 6.167 0.017 116.3 1l62.1 399861.0
55 8,750 6.183 '0.033 114,31 161.? 379090.9
60 8.717 6.200 6.050 114.7 161.2 386622.5
[ 8,650 6,133 0,033 115.6 163.0 386622.5
70 8.300 6.150 0.050 120.4 162.6 452558.1
75 8.217 6.117 0.033 121.7 163.5 463333.3
80 7.950 6,150 0.033 125.8 162.6 = 540555.6
8s 7.750 6.150 0.050 129.0 162.6 608125.0
90 7.0850 5,700 ©.033 141.8 175.4 720740.7
) Average 126.4 164.3 610495.4

Loop Number 2 c¢f 2 Number of vectors = 10060 Length = 1024
Angle Long~»1024, Short=51, Dummy VPS L VPSS Pixeals/sec

] 6.050 5.617 0,050 165.2 178.0 2245384.6
5 6.633 6.050 0.033 150.7 165.3 1668000.0
10 7.033 6.100 0,033 142.1 163.9 1042500.0
15 7.100 6.083 0.050 140.8 164.) 957049.2
20 7.700 6.083 0.033 129.0  164.4 601855.7
25 8.133 6.117 0.050 122.9 163.4 482479.3
30 8.033 6.133 0,033 124.4 163.0 512105.3
s 8.833 6.150 0,033 113.2 162.6 362608.7
40 9,783 6.167 0,050 113.8 162.1 371847.1
LE] 9,733 6.183 0,017 114.5 161.7 381568.6
50 8.567 6,167 ©0.017 116.7 162.1 405416.7
35 8.767 €.150 0.017 114.1 162.6 371847.1
60 8.700 6.217 0.017 114.9 160.8 a9ls12.1
65 8.617 6.150 0.033 116.0 162.6 394459.5
70 8.300 6.150 0.017 120.5 162.6 4525349.1
15 8.233 6.150 0.017 121.4 162.6 467040.0
80 7.950 6.133 0.017 125.8 163.0 535596.3
85 1.767 6.167 0.017 128.7 162.1 608125.0
90 7.067 $.700 0.033 141.5 175.4 711951.2
Average 127.2 " 164.) 682326.6

Resum are also given for .the SUN system using
the windows. We have the further luxury of being able to
lock the screen for any other updates while we piot our




data. This significantly improves the performance. The
Sierpinski algorithm was also run using the different plotting
packages available. The results are shown below. These
sample execulions were run on a SUN2/100 under their
window system.

Sierpinski with the standard SUNCORE plotting package.

order sec = 0.12 ~ vec

1 - - 16 == vac/sec = 137
order 2 - sec = 0.48 - vec = 80 -~ vec/sec = 165
order 3 - sec = 1.97 - vec = 336 ~= vec/sec = 170
order 4 - sec = 7,82 - vec - 1360 ~~ vec/sec = 173
order 'S5 -~ sec = 31.03 - vec = 5456 -- vec/sec = 175
Sierpinski with the SUN CGI piotting package.
order 1 - sec = 0.08 - vec - Lt == vec/sec = 192
order 2 ~ sec = 0.37 - vec = BU -~ vec/sec = 218
order 3 - sec = 1.55 - vec = 336 -~ vec/sec = 216
order 4 ~ sec = 6.02 - vec - 1360 -- vec/sec - 226
order 5 - sec = 23.60 - vec =~ 5456 =-- vec/sec » 231

Sierpinski with the fast absclute plotting package with
SUN Windows

order 1 - sec = 0.02 - vec -+ 16 «= vec/sic = 960
order 2 ~ sec = 0.03 - vec - 80 -~ vec/sce - 2400
order 3 - see'= 0.17 - vec - + 336 ~= vec/sec ~ 2016
order 4 ~ sec = 0.58 - vec =~ 1360 -~ vec/zec = 2331
order S5 - sec = 2.05 -~ vec = - 5456 -~ vec/sec * F143%
crder 6 - sec' = 1.23 -~ vec -+ 21840 -~ vec/sec - Jols
order 7 - sec = 25.53 ~ vec = 87376 -~ vec/sec = 3422
6. Summary of Results
The results of these benchmarks plus the LLNL
Fortran Kernels are reported in A ix B. The tables first

summarize the systems tested by detailing the hardware
processor, the clock speed, the presence of floating point
accelerators and vector thesiuot;ndmemaylocﬂ,duk
8 . ics device, ing systems area
D ber Fhe- tccond, tabic. s the results of the, LLNL
Kernels and LINPACK when available along with our
benchmark number three, The next table the results of
our first benchmark in three different modes. The first is the
lowest level graphics, the second is the standard or library
graphics and the third set is the windowed graphics. The
numbers reported are the short and long vector pixels per
second. y

The Sierpinski curve was used to test these sysiems
since its vectors are progressively shorter and it generates a
lngemmbaofmmplocﬁngspeedsmagmn.mpomqm
vectors per second for the three cases of graphics routine
described above. The last table details the space shuttle, our
standard plot, again with the three sets of graphics numbers.

7. Future Work

This is a report of the methodology buing used to
benchmark workstations. The emphasis of this puper has been
onthcwakforthegraphicspotqonofﬂnehcxwiunwhng.m
effort at LLNL is to the whole picture of benchmarks. We are
continuing to refine the routines and to test vunous vendors
hardware.

We have developed four benchmarks that relate well to
vegtortplos required by engineering and scientific users. As the
suite o evolves we will include the space shuttle as a
standard plot for color and continuous-tone images using
polygons. We also expect to test and rate hidden swrface
removal algorithms and hardware. The work of benchmarking
will never be finished.
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Appendix A - Listing of Graphic Functions Library

/* . ExzummsuTTomEN.

/I

/* Standard Core graphics library for SunCore
/0 '

/* This work was produced under the sponsorsiip of the
/* the U.S. Department of Energy

/'

/* (c) copyright 1985 by the Regents of the Jniversity
’* of Califormia. Ail rights reservea

/.

/* . programmed by Bob Judd for LLNL benchmark worx
/* version la: 15 May 198S
/
tinclude <sys/types. h>
finclude <ays/timés.h>
tinclude <stdio.h>
#include <usercore.h>
char suffix(2] = *b*;
inci bwldd();
iat pixwinddi); o :
struct vwsurf rawsurface = DEFAULT_VWSURF (bwlda);
struct vwsurf windowsurface = DEFAULT_VWSURF (pixwindd);
struat pixwin *pw;
STIuCt rect °*r;
struct vwsurf ="surface;
SCIuct tais start;
time_t btime;
SLIUCL Tms sSTOp;
time T stime;
IAd INITIALEZE:-
int  gx.g9y; :
gopen (}
{
struct vwsurf *get_surfacel();
surface = get_surtace():;

SRAPHICS ./

1£4 inicialize_core(BASIC, NOINPUT, TWOD) ) exit(l);
if(initialize_view_surface(surface,FALSE))  exit(2);
124 select_view_surface(surface, FALSE)) exit(J);

set_viewport_2(0.01,0.99,0.01,0.74);
set_window(0.,1023.,0.,1023.1;
create_tempoTary_segment();
set_rastercp (NORMAL) ;

gx =~ 1024;

gy = 168;

}

/*CLOSE GRAPHICSandEND SESSITION ~/

gclose()
{
close_temporary_segmenc () ;
sleep(2);
deselect_view_surface(surface);
terminacte_view_surface(surface);
terminate_core():
}
gsize(x,y)
int *x,*y;
{
*Xngx;
*y=gy;
t
gerasse ()
{
new_trame();
}
gline{lastx, lasty,x.y)
int lastx,lasty.x.y;
{
move_abs_2( (double)lastx, (double)lasty);
line_abs_2((double)x . (double} y )i
}

e e 4ot St " ;i @ 2 B T

gmove (lastx, jlasty)
int lastx, lasty;
{
move_aos_2((double) lascx, (double) lascy);
) :
Jdravw(x,y)
int x,y;
{
line_abs_2((dounle)x
}
struct vwsurf *get_surtface()
i
if (gecenv ("WINDOW_ME™) ).
recurn(ewindowsurface);
else
return{érawsurtace);

, {dounle)y )i

)
Jiock ()
{
}
gunicck )
{
+
/* Function to start an interval timer in 1/60 sec ticks
gstart timer()
{
Dtimes=times (estart);
btime=start.tms_utime + start.cms_stime
+starc.cms_cutime ¢+ start.cms_catime;
' -
/* Function to stop an intarval timer in 1/60 sec ticks
IAd recurn.  number of ticks as integer
gstop_timec() : :
{ :
int ticks; :
stime=times(éstop); R
stime=stop.tms_utime - stop.tms_stime
*3LOp.LMS_cCutime + stop.tms_cstime;
cicks=stime-btime; ' -
return(ticks);
i




Appendix B - Tables of Results

Table 1. Systems
System Description

Cray XMP 48
Cray 1S

VAX 11/780
Apollo dn 660
Tektronix 6130
Apollo dn 320
Apollo dn 550
SUN 2+

IBM PC/AT
SUN2

IBM PC

Table 2. Processing Speeds

System Description

Cray XMP 48
Cray IS

VAX 11/780
Apollo dn 660
Tektronix 6130
Apollo dn 320
Apollo dn 550
SUN 2+

IBM PC/AT
SUN2

IBM PC

Table 3. Benchmark 1

System Description

Cray XMP 48
Cray 1S

VAX 117780
Apollo dn 660
Tektronix 6130
Apollo dn 320
Apollo dn 550
SUN 2+

IBM PC/AT
SUN2
IBMPC

Proc. FP/vec MHz RAM MB Disk MB
Cray vec 1 64 160000
Cray vec 83 8 10000
VAX FPA 4 456
Apollo none 2 154
32016 32081 10 3 80
68010 PEB 10 1.5 70
68010 PEB 10 3 remote
68010 sky 10 2 70
80286 80287 6 .64 i3
68010 none 10 2 remote
8086 none 4.77 .64 10
LLNL Fortran Kemels in KFLOPS LINPACK
Low High Ave Harm KFLOPS
2615 162193 47603 9283 21000
2283 95294 28437 7485 12000
42 359 148 112 130
45 225 116 102 69
28 91 49 45
12 81 4 36 28
11 76 40 32 47
12 53 28 25 22
3 22 14 12 9
7 22 12 11 6
0.8 4 2 2 6
Lowest Levet Graphics Library Graphics
VPSL VPS S VPSL VPS S
2334 27321 4600 18602
1916 22854 3468 14735
530 2047 161 207
218 830 141 245

o/s Graphics  LAN
LTSS TMDS NSC
LTSS TMDS NSC
VMS Ethernet
Domain Apollo Apollo Ring
Unix 4.2 Tektronix  Ethemet
Domuin Apollo Apollo Ring
Domain Apollo Apollo Ring
Unix 4.2 Sun Ethernet
DOS PGB Ethernet
Unix 4.2 Sun Ethernet
DOS C/GDA Ethernet
Benchmark 3
SASI KTPS KFLOPS
120 452 14905
88 361 11913
1.0
0.6 1.5 49
03 0.76 25
03
0.74 24
0.67 2
0.24 78
Window Graphics
VPSL VPSS
100 216
125 149

Notes

Notes

Notes



Table 4. Benchmark 2, The Sicrpinski Curves

Algorithm Lowest Level
System Description vPS VPS
Cray XMP 48 174485 59122
Cray 18 132616 . 46103
VAX 11/780 :
Apolio dn 660 g 23960 11900
Tektronix 6130
Apollo dn 320 : 8010 2890
Apollo da 550 6390 .. 3800
SUN 2+ 16512 3002
IBM PC/AT 15612 ; 1542
SUN2 15285 1015
IBMPC 5587 537
Table 5. The Space Shuttle, standard plot.

Lowest Level Graphics

System Description 2DKPS 3DKPS
Cray XMP 48 670 561
Cray IS 550 464
VAX 117780
Apolic dn 660
Tektronix 6130
Apollo dn 320
Apoilo dn 550
SUN 2+ 10.8 6.9
1BM PC/AT
SUN2 6.2 2.8
IBM PC
Notes

ng system is the Livermore TimeSharing
Sysm(l. ) and the graphics is the Television Monitor
Display System (TMDS) with ‘256 chaanels of
512x512x1 bit frame buffer. The LAN is the
hyper-channel from NSC.

2. The PEB is the Performance Enhancement Board.

3. Professional Graphics Board (PGB) with the Halo
graphics library.

4. Color/Graphics-Display Adapter (C/GDA) with the Halo
graphics library.

Library Graphics Window Graphics

VPS

20187
16039

238

250
145

Library Graphics
2DKPS - IDKPS

422 379
342 - 307

3.0 57

59 2.7

VPS

4160

1633
1580
154

177

Window Graphics
2DKPS  3DKPS
5.6 45
6.0 2.1

Notes

.



